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Abstract
In order to get more reliable electronic structure for protein in aqueous solution,
it is necessary to construct a simple, easy-to-use equivalent potential of water
molecules for protein electronic structure calculations. First-principles, all-
electron, ab initio calculations have been performed to construct the equivalent
potential of water molecules for the electronic structure of histidine (His) in
solution. The process consists of three steps. First, the geometric structure of
the His + nH2O system is determined by searching for the lowest energy of
the system using a free cluster calculation method. Then, on the basis of the
geometric structure obtained, the electronic structure of His with the potential
of water molecules is calculated using the self-consistent cluster-embedding
method. Finally, after replacing water molecules with dipoles, the electronic
structure of His with the potential of dipoles is calculated. The dipoles are
adjusted so that the electronic structure of His with the potential of dipoles is
close to that of water molecules. The calculations show that the major effect of
water molecules on the electronic structure of His is as follows: (1) the energy
gap broadens by 33%; (2) two states, containing the contribution of carbon 2p
electrons from the atom Cα, remain approximately unchanging, while the other
states rise by about 0.049 Ryd which causes the exchange of state positions. The
effect of water molecules on the electronic structure of His can be simulated by
the dipole potential.

1. Introduction

The structural taxonomy of proteins has been intensively studied using crystallography and
nuclear magnetic resonance (NMR) spectroscopy for decades. More than 30 thousand protein
structures are known. In contrast, the computational research into the electronic structure of
protein by first-principles calculation has not yet been well performed because of the huge
number of atoms a protein consists of, and the limitation of both the computational conditions
and the traditional calculation methods. But knowledge of the electronic structure is essential
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for understanding the properties and functions of a molecule. It is from this perspective that a
feasible computation technique that can greatly reduce the computational effort is needed for
solving such problems.

‘Self-consistent cluster-embedding calculation’ (SCCE), a first-principles, all-electron,
ab initio calculation method, was developed on the basis of density functional theory
(DFT) [1, 2]. Unlike the traditional calculation method, the one-electron wavefunctions
obtained by the SCCE method are localized—-each one-electron wavefunction is localized
only in part of the region occupied by the system. This approach results in two advantages:
(1) the SCCE method can be applied to any complex system, and the localized valence
electrons in a material can be better described using the localized wavefunctions obtained
in the SCCE calculation; (2) the computational effort is reduced greatly, from the scaling
with N3 of traditional method to scaling with N (N is the number of atoms of the system),
while the calculation precision is kept. This makes the electronic structure calculation for
protein a reality. The SCCE calculations have been successfully applied to several insulators,
semiconductors, metals, crystals with defects and impurities, and surfaces [2–6]. For the first
time, the first-principles, all-electron, ab initio calculation of electronic structure of a real
protein was completed in 2000 [7, 8]. To date, the electronic structures of three proteins with
four three-dimensional structures have been obtained [7–10] (see the Website www.esprotein.
org.cn). However, the former calculations did not include solvent influence due to limited
computational resources and the following reasons: water molecules are usually quivering,
turning and fungible at high speed in action with protein. There is no fixed chemical bonding
between water molecules and protein in solution. The effect of water molecules on protein is
a kind of average force, which mainly influences the three-dimensional structure of protein.
So the electronic structure of a protein in solution having a certain geometric structure can
be approximated by the electronic structure of the same protein having the same geometric
structure but no water molecules around. This viewpoint has been demonstrated by our previous
calculated results which agree with experimental data. In order to make the calculation more
reliable, however, the effect of water molecules should be considered.

Although the computational effort is reduced greatly in the SCCE method, for a protein
containing thousands of atoms the computational effort is still so large that it approaches the
upper limit for a supercomputer. So it is impossible to add a large amount of water molecules to
the calculation. It is necessary to construct an equivalent potential for water molecules, which
must be simple, easy-to-use, effective and with little additional computational effort.

Some equivalent potentials had been constructed for the geometric structure calculation
of proteins, say, protein folding and molecule dynamics calculation [11, 12]. For example,
people include the solvation effect in energy parameters, or use the solvation model which
considers the effect of solvent as a smooth solvation potential represented by an equivalent
function [13, 14]. The solvent hydrogen bond influence (water, ethanol and resin) on the
stability of the peptide has been calculated by Guo and Karplus by first-principles calculation,
in 1994 [15]. In 1995, the solvent’s effect on several small protein molecules such as the
bovine pancreatic trypsin inhibitor (BPTI) has also been studied by Schaefer [16]. In recent
years, some other models have been developed such as the Poisson–Boltzmann (PB) continuum
model [17] and MM/PBSA model [18]. However, they are all designed for the calculation of
geometric structure, not electronic structure. Because the first-principles, all-electron, ab initio
calculation of the electronic structure of protein is at its primary stage, there is no suitable
equivalent potential of water molecules for the electronic structure calculation of protein using
the SCCE method.

There are more than a hundred thousand proteins. But we only need to construct the
equivalent potentials of 20 amino acids—the building blocks of protein. Those for two amino
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acids, cysteine (Cys) and lysine (Lys), have already been successfully calculated [19, 20]. In
this paper, the equivalent potential of water molecules for the electronic structure of histidine
(His) is constructed by first-principles calculation. His has 20 atoms with an alkalescent lateral
chain. It belongs to the polar amino acids, and is hydrophilic. In neutral solution, the histidine’s
N-terminal gets a proton to become H3N+, the C-terminal loses a proton to become COO−, and
the tip of lateral chain is a benzene ring.

This work is based on two considerations. (1) There is no fixed chemical bond between
water molecules and protein in solvent, so no fixed relative position of water molecules and
protein. The water molecules are with the greatest probability at the position which makes the
total energy of the system minimum. The electronic structure of protein with water molecules
at these positions can be considered approximately as the electronic structure of protein in
the solvent environment. (2) The electronic structure of protein is calculated using the SCCE
method. The dipoles made up of point charges can be easily added to the SCCE calculation
with little additional computational effort. On the other hand, the average potential of polar
water molecules can be reasonably simulated by dipoles. So we choose dipoles made up of
point charges to simulate the potential of water molecules on the electronic structure of His.

The work consists of three steps. First, the geometric structure of the His + nH2O system
is determined using the free cluster calculation. Second, on the basis of the geometric structure
obtained, the electronic structure of His with the potential of water molecules is calculated using
the self-consistent cluster-embedding (SCCE) method. Third, after replacing water molecules
with dipoles made up of point charges, the electronic structure of His with the potential of
dipoles is calculated. The dipoles are adjusted so the electronic structure of His with the
potential of dipoles is close to that obtained in the second step. Thus the equivalent potential
of water molecules for the electronic structure of His is established using the dipoles made up
of point charges. The equivalent potential developed in this paper can be applied directly to the
electronic structure calculation of protein using the SCCE method.

2. Theoretical model

The free cluster calculation and the self-consistent cluster-embedding calculation methods have
been described in detail elsewhere (see [2, 21, 24] and Website www.esprotein.org.cn). Here
we only give a brief overview for completeness.

According to the density functional theory (DFT) [25, 26], the total energy of a system
containing N electrons and M fixed nuclei can be written as (no relativistic effect is included;
atomic units are used: e2 = 2, h̄ = 1, and 2me = 1, the unit of energy is the Rydberg constant
Ryd = e2/2a0 = 13.6 eV):

EV [ρ] = Tni[ρ] + Exc[ρ] +
∫ ∫

ρ(r)ρ(r′)
|r − r′| dr dr′ − 2

M∑
j=1

∫
ρ(r)Z j

|r − R j | dr +
M∑

i �= j

Zi Z j

|Ri − R j | ,

(1)

where Tni[ρ] is the kinetic energy of a non-interacting electron system, Exc[ρ] is the exchange–
correlation energy. For deriving equation (1), Kohn and Sham have assumed the existence of
a non-interacting electron system having the same ground-state charge density ρ as the real
interacting system. Each non-interacting electron can now be represented by a stationary state
one-electron wavefunction �σ

n (r). The charge density and total kinetic energy of the non-
interacting system can be written as

ρ(r) = ρ↑(r) + ρ↓(r) =
∑

occupied...l

|�↑
l (r)|2 +

∑
occupied...m

|�↓
m(r)|2, (2)
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Tni[ρ] =
∑

occupied...l

∫
�

↑∗
l (r)(−∇2)�

↑
l (r) dr +

∑
occupied...m

∫
�↓∗

m (r)(−∇2)�↓
m(r) dr, (3)

where the superscripts ↑ and ↓ represent spin up and spin down, respectively. Using
formulae (2) and (3), a stationary state single-electron Schrödinger equation, i.e., the well
known Kohn–Sham equation [26], is obtained by the variation of functional (1) with respect to
�σ∗

n (r) under the conservation rule
∫

ρ(r) dr = N :
{

−∇2 + 2
∫

ρ(r′)
|r − r′| dr′ − 2

M∑
i=1

Zi

|r − Ri | + V σ
xc(r)

}
�σ

n (r) = εσ
n �σ

n (r), (4)

where the exchange–correlation potential is

V σ
xc(r) = ∂ Exc[ρ]

∂ρσ (r)
. (5)

The exact solution of equation (1) could be obtained if the following two conditions were
satisfied: (i) Exc[ρ] is exact; (ii) the trial one-electron wavefunctions �σ

n (r) are unconstrained
in solving the Kohn–Sham equation (4) (required by the variational principle). Then we should
obtain a uniquely exact set of {�σ

n (r)} which corresponds to a uniquely correct ρ(r). The
Kohn–Sham equation (4), with an exact V σ

xc(r) and a correct ρ(r), describes such a situation
in which one electron represented by a �σ

n (r) moves under the average potentials of all
other electrons and nuclei. Because the potential produced by an electron (represented by an
|�σ

n (r)|2) does not act on itself, the single-electron Hamiltonian in equation (4) includes only
the potentials produced by ρ ′(r) = ρ(r) − |�σ

n (r)|2. This leads to two results: (a) different
�σ

n (r) will correspond to different single-electron Hamiltonian (or V σ
xc(r)) in Kohn–Sham

equation (4); (b) in general, the Hamiltonian acting on an �σ
n (r) has no symmetry of ρ(r).

In practical calculations, however, the two conditions above cannot be satisfied. The
following approximations are used. First, the approximation of Exc[ρ]: the exchange–
correlation potential V σ

xc(r) is averaged over all one-electron states with spin σ (such as LDA).
Second, we give up the unconstrained condition: each �σ

n (r) is constrained to satisfy a certain
boundary condition. Please note that the first approximation means that all �σ

n (r) in Kohn–
Sham equation (4) now correspond to the same V σ

xc(r) (and single-electron Hamiltonian),
which has the symmetry of ρσ (r), and all �σ

n (r) are now constrained by this added symmetry
if considering no boundary condition. But this added constraint is not physically essential,
and can be removed by a boundary condition. The second approximation means that all
wavefunctions which do not satisfy the boundary condition are thrown away, although they may
be the true solutions for the system. When one kind of {�σ

n (r)} is chosen (a boundary condition
is applied), this means that a kind of non-interacting electron is used to describe the real system
approximately. So by choosing different boundary conditions, we can use different kinds of
{�σ

n (r)} to get approximate ρ(r). According to the variational principle, the calculated energy
will be close to the true ground-state energy only if the trial one-electron wavefunctions �σ

n (r)
describe real electrons well. And such a set of {�σ

n (r)} is the best approximation solution. For
example, a set of Bloch functions can give a good description to quasi-free electrons, but cannot
do it for localized electrons. The latter can be best described by a set of localized one-electron
wavefunctions.

We now assume the first approximation being taken, so all �σ
n (r) correspond to the

same single-electron Hamiltonian H σ (r), and are constrained by an added symmetry of ρσ (r)
(without a boundary condition). We discuss the second approximation. There are two kinds of
non-interacting electrons, extended and localized, which satisfy different boundary conditions,
and correspond to different calculation methods.

4
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2.1. Extended non-interacting electron model

Each one-electron wavefunction �σ
n (r) is constrained to spread over the whole region occupied

by the system.
Under this model, equation (4), with a periodic boundary condition, can be used for a

perfect periodic crystal. The single-electron Hamiltonian with a periodic boundary condition
has the periodicity of ρ(r), the Bloch theorem is valid and a band structure calculation is
performed. For a free cluster, equation (4) is solved with the finite boundary condition

�σ
n (r)

r goes away from cluster−−−−−−−−−−−−−→ 0, and the single-electron Hamiltonian has the point symmetry of
the free cluster.

2.2. Localized non-interacting electron model

Each one-electron wavefunction �σ
n (r) is constrained to distribute in a part of the region

occupied by the system.
Under this model, equation (4) is used for the self-consistent cluster-embedding (SCCE)

calculation: the system is divided into k embedded clusters, and the N�σ
n (r) are divided into

k groups. The �σ
n (r) in the i th group satisfy the i th set of special boundary conditions, and

localize in the i th region (embedded cluster).
The details are as follows. Consider the i th embedded cluster; then the other k − 1

embedded clusters are regarded as the fixed environment, and their atoms are the same as the
surrounding atoms. Each surrounding atom has a core region. The electronic density of the i th
embedded cluster is represented by ρ1(r); the electronic density of the other k − 1 embedded
clusters is ρ2(r) which has small overlap with ρ1(r). Because all N�σ

n (r) are localized, we
have (N = N1 + N2)

ρ(r) =
N∑

occupied...n,σ

|�σ
n (r)|2

=
N1∑

occupied...n1,σ

|�σ
n1

(r)|2 +
N2∑

occupied...n2,σ

|�σ
n2

(r)|2 ≡ ρ1(r) + ρ2(r), (2′)

Tni[ρ] = Tni[ρ1 + ρ2] =
N∑

occupied...n,σ

∫
�σ∗

n (r)(−∇2)�σ
n (r) dr

=
N1∑

occupied...n1,σ

∫
�σ∗

n1
(r)(−∇2)�σ

n1
(r) dr

+
N2∑

occupied...n2,σ

∫
�σ∗

n2
(r)(−∇2)�σ

n2
(r) dr

≡ Tni[ρ1] + Tni[ρ2]. (3′)
A zero-value term

∫
ρ1(r)Vor dr is added to the right side of formula (1). For fixed ρ2(r), using

formulae (2′) and (3′), the variation of formula (1) now leads to the basic equation of the SCCE
method [1]:{

−∇2 + 2
∫

ρ1(r′) + ρ2(r′)
|r − r′| dr′ − 2

M∑
i=1

Zi

|r − Ri | + V σ
xc(r) + Vor(r)

}
�σ

n (r) = εn�
σ
n , (4′)

where the �σ
n (r) represent only the non-interacting electrons localized in and around the i th

embedded cluster.

5
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Apparently, equation (4′) is exactly the same as the Kohn–Sham equation (4) except for
Vor(r). Vor(r) is defined as

Vor =

⎧⎪⎨
⎪⎩

2
M2∑
j=1

Z j

|r − R j | if 
r is in the core regions of surrounding atoms

0 otherwise,

(6)

where the M2 is the number of surrounding atoms. It is obvious that Vor cancels the nuclear
Coulomb potential in the core regions of all surrounding atoms. The cluster electrons will only
‘feel’ an electron–electron positive Coulomb potential in these regions, and be forced out. So
the �σ

n (r) in equation (4′) satisfy a special finite boundary condition caused by the Vor(r):

�σ
n (r)|r is in the core regions of surrounding atoms = 0. (7)

The physical reasons for boundary condition (7) were given in [1]. Consider the formulae (2′),
(6) and (7); it is easy to see that

∫
ρ1(r)Vor(r) dr = 0. So the Vor(r) in equation (4′) does not

change the energy functional (1). Actually what we have done is only transform the boundary
condition (7) into an equivalent potential Vor(r) in equation (4′), so equation (4′) is just the
Kohn–Sham equation (4) with the special boundary conditions (7). In addition, there is a
special finite boundary condition for �σ

n (r) because of its locality:

�σ
n (r)

r go away from the embedded cluster−−−−−−−−−−−−−−−−−−−−→ 0. (8)

For a real finite system, the boundary conditions (7) and (8) are different for different embedded
clusters. On calculating all k embedded clusters one by one, equation (4′) gives a complete set
of one-electron eigenfunctions of the whole system which makes the total energy in formula (1)
minimum.

In practical calculations, the optimum values of core radii of surrounding atoms are
determined according to two criteria: (i) there is no collapse disaster; (ii) the number of cluster
electrons remaining in the surrounding core regions is the minimum. In general, the boundary
condition (7) can be satisfied with high precision, and it is found that the results are not sensitive
to the core radii if they are around the optimum values.

3. Geometric structure of the His + 7H2O system

The geometric structure and electronic structure of the His + 7H2O system are determined by
free cluster calculation. The reasons for taking seven water molecules are as follows:

(1) It is reasonable to assume that the His electronic states, whose energies are much lower
than the Fermi energy, are not changed by water molecules. Besides, the properties and
functions of a protein are mainly determined by the electronic states near the Fermi level.
So we actually use seven water molecules to simulate the water solvent effect on the His
electronic states near the Fermi level. If we choose ten electronic states near the Fermi
level, the degrees of freedom are few, and seven water molecules (containing 21 atoms,
more than the 20 atoms of His) should be reasonable.

(2) The valence electrons in the amino acid residue are localized electrons. The protein’s
electronic states near the Fermi level are mainly the localized electrons of the N-terminal
H3N+, the C-terminal COO−, and the tip of lateral chain (neutral or charged). So only the
water molecules surrounding the three parts need to be considered. Our calculations show
that three water molecules are needed near the N-terminal H3N+, one water molecule is
needed near the C-terminal COO−, and three water molecules are needed near the neutral
tip of the lateral chain. Thus, seven water molecules are needed for His.

6
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Table 1. Atomic coordinates of the His cluster.

No. Atom X (Å) Y (Å) Z (Å)

1 C 1.295 1.036 0.483
2 C 0.709 −0.204 1.156
3 C −0.546 −0.625 0.429
4 N −1.837 −0.208 0.7
5 C −2.668 −0.842 −0.206
6 N −1.919 −1.618 −1.001
7 C −0.63 −1.514 −0.649
8 N 1.625 0.721 −0.941
9 C 2.55 1.457 1.209

10 O 2.619 2.565 1.717
11 O 3.534 0.659 1.292
12 H −3.74 −0.73 −0.263
13 H 0.199 −2.027 −1.115
14 H −2.119 0.439 1.422
15 H 1.436 −1.013 1.123
16 H 0.468 0.025 2.192
17 H 0.568 1.845 0.516
18 H 2.022 1.561 −1.397
19 H 0.765 0.433 −1.439
20 H 2.317 −0.048 −0.973

(3) Of course, the more water molecules that are used, the better approximation the results
give. However, more water molecules would make the adjusting of geometric structure
and the dipoles much more difficult. Limited by the computational capacity, we choose
seven water molecules.

The software for the free cluster calculation was developed by the group of Professor
Callaway in the Department of Physics and Astronomy, Louisiana State University
(USA) [21–23]. Electronic structures of many molecules and clusters have been calculated
using this software [27–31].

A linear combination of Gaussian orbitals is used as the basis function. The optimized
Gaussian bases are the same as those used in the electronic structure calculation for
proteins [7–10]: C—8s6p, 26 Gaussian bases; N—8s7p, 29 Gaussian bases; O—8s7p, 29
Gaussian bases; H—8s1p, 11 Gaussian bases. The total number of Gaussian bases is 757. There
are 451 002 grid points used for numerical calculation of the exchange–correlation energy.

3.1. Initial geometric structure of the His + 7H2O system

The coordinates of 20 atoms of His in solution are given in table 1; these were originally
from a PDB structure file provided by the Laboratory of Mass Spectrometry and Gaseous
Ion Chemistry, the Rockefeller University (http://prowl.rockefeller.edu/aainfo/struct.htm). In
neutral solvent (pH = 7), the His N-terminal gets a proton to become H3N+, and the C-terminal
loses a proton to become COO−. So polar water molecules mainly influence the His charged
H3N+, COO−, and the tip of the lateral chain. At the beginning, the seven water molecules are
put randomly around the His: three water molecules near the H3N+, one near the COO−, and
three near the tip of the lateral chain.

By solving the Kohn–Sham equation (4) self-consistently, we get the electronic structure,
total energy, and force applied to each atom.

7
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Figure 1. Final geometric structure of the His + 7H2O system.

3.2. Adjusting of seven water molecules

For a real protein in solution at room temperature when the hydrogen bonds break easily, it is the
free energy, which contains the entropy part, that determines the protein folding as well as the
protein’s final solution structure. For a certain solution structure at any moment, there is always
one electron distribution (electronic structure) that makes the system’s total energy minimum,
because the movement of an electron is much faster than that of a nucleus. So the entropy
affects firstly the protein’s solution structure, which then determines the electronic structure of
the protein. However, what we are interested in is neither the protein folding nor the solution
structure, but the electronic structure of the protein with a known solution structure. In the
His + 7H2O system, the His has already been in its solution structure which is unchanging, and
the structure of the water molecule is unchanging too. Only the relative position of the seven
water molecules and His can be altered, around a certain structure having the minimum total
energy. So the entropy difference caused by different positions of the seven water molecules
is very small and can be reasonably neglected. Then the seven water molecules are most
probably at the positions that make the total energy minimum, and the electronic structure
of the protein with water molecules at these positions can be considered approximately as the
electronic structure of protein in the solvent environment.

In the calculation, the water molecules are moved according to the applied forces, while the
geometric structure of each water molecule is kept. The seven molecules are adjusted one by
one. After hundreds of adjustments, the geometric structure of the His+ 7H2O system with the
lowest total energy is obtained. The total energy of the final structure is −2157.1160 Ryd,
0.1070 Ryd lower than that of the original structure. The final atomic coordinates of the
seven water molecules are given in table 2. The final geometric structure of the His + 7H2O
system is shown in figure 1, where the atoms and water molecules are numbered according to
tables 1 and 2, respectively. There are three water molecules near H3N+ (H2O [2, 3] and [4]),
one near COO− (H2O [1]), and three near the benzene ring of the lateral chain (H2O [5, 6]
and [7]).

8
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Table 2. Final atomic coordinates of the seven water molecules.

No. of water
molecule Atom X (Å) Y (Å) Z (Å)

O 4.5474 1.4705 3.8128
[1] H 4.6566 0.8189 3.1202

H 4.1258 2.2130 3.3800

O 3.3725 −1.3911 −1.2786
[2] H 3.2887 −2.1873 −1.8033

H 4.0913 −1.5761 −0.6741

O 2.6042 3.0051 −2.4025
[3] H 2.4447 3.6062 −3.1301

H 3.4208 3.3140 −2.0101

O −0.2697 0.5799 −2.8479
[4] H −1.1512 0.3854 −2.5296

H −0.4083 1.0131 −3.6901

O 2.1147 −4.0535 −4.2382
[5] H 1.4878 −4.4162 −4.8640

H 2.9717 −4.2319 −4.6256

O −2.9817 1.9774 2.5211
[6] H −3.9235 2.0130 2.6883

H −2.6436 2.8005 2.8739

O −5.7963 −1.0721 −0.0245
[7] H −5.9550 −1.9567 −0.3541

H −6.6688 −0.7234 0.1581

Of course, it is not absolutely certain that we have reached the best structure, i.e., the best
relative positions of water molecules and His which has the lowest total energy. But we are
sure that the total energy of our final structure is very close to the truth. So using the final
structure, the calculated electronic structure of His in the potential of water molecules will be
a good approximation to that in a real aqueous solution. The reasons are as follows. (i) We do
not study the relative positions of the water molecules and His. (ii) There is no fixed chemical
bond between the water molecules and the protein in solution, so there is no fixed relative
position of the water molecules and the protein. The water molecules are most probably at
the position which makes the total energy of the system minimum. (iii) In order to reduce the
computational effort, charge density fitting is used in both free cluster calculation and band
structure calculation: to calculate the electronic structure using a pseudo-charge density, which
differs from the real one but can give a total energy very close to that calculated using the real
charge density. It is deemed that the electronic structure calculated using the pseudo-charge
density is a good approximation to the real electronic structure of the system.

4. The electronic structure of the His in the potential of the water molecules

On the basis of the geometric structure of the His + 7H2O system determined in section 3, the
system is now divided into eight clusters for the self-consistent cluster-embedding calculation
(SCCE). The His molecule is the first cluster, and each water molecule is one cluster. The
software for the SCCE calculation was developed by our group [2, 24], and has been applied to
several insulators, semiconductors, metals, crystals with defects and impurities, surfaces, and
proteins [2–12].

9
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Table 3. Parts of eigenvalues and Mulliken populations of His with the potential of seven water
molecules.

Mulliken populations

C N O H
Energy

State (Ryd) s p s p s p s p

43 −0.0840 3.5340 0.5896 −1.1418 3.3921 −0.0032 −0.0010 −5.3757 0.0060
42 −0.1058 2.0244 −0.1382 4.9622 0.4838 −0.0348 0.0102 −6.3170 0.0095

The above are unoccupied states
41 −0.3578 0.0102 0.0055 0.0178 0.0020 0.0005 0.9726 −0.0088 0.0001
40 −0.3635 −0.0585 0.0947 0.0321 0.0003 0.0452 0.9152 −0.0296 0.0006
39 −0.4114 −0.0033 0.6334 0.0347 0.0811 0.0143 0.2561 −0.0198 0.0035
38 −0.4380 0.1916 0.1589 0.0581 0.0369 −0.0005 0.5606 −0.0073 0.0018
37 −0.4880 −0.0644 0.1895 0.2351 0.6213 0.0012 0.0039 0.0111 0.0024
36 −0.5260 −0.0066 0.1324 0.1295 0.7434 −0.0001 0.0108 −0.0132 0.0039
35 −0.6217 −0.0072 0.4823 0.0087 0.0382 0.0062 0.4787 −0.0079 0.0011
34 −0.6569 −0.0339 0.3065 0.0207 0.0198 0.1117 0.4985 0.0745 0.0022

As proven in the section 2, for the SCCE calculation, the potential is not changed; only
the one-electron wavefunctions are chosen for being localized: each one-electron wavefunction
belongs to one cluster, and localizes in the region of the cluster. So the electronic structure of
His is separated from that of the water molecules, i.e., the electronic structure of the His in the
potential of the water molecules is obtained.

The calculation contains two kinds of iterations. (i) Intra-cluster iteration. For each
embedded cluster, equation (4′) is calculated self-consistently: ρ1(r) for the embedded cluster
is self-consistently changed during the iterations, while the rest of the system serves as a fixed
environment, ρ2(r). (ii) Inter-cluster iteration. The eight embedded clusters are synchronously
calculated by eight CPUs. After the convergence of the intra-cluster iterations of all eight
embedded clusters, the results are used for constructing new environments, ρ2(r), for each
embedded cluster, and a new inter-cluster iteration begins. After ten inter-cluster interactions,
we get a converged result. Table 3 gives the information on orbits 34–43.

5. The equivalent potential of water molecules with His simulated by dipoles

Each water molecule in section 4 is now replaced by a dipole: the O atom is replaced by a
negative point charge, and the two H atoms are replaced by a positive point charge located in
the middle of a line connecting the two H atoms. Adjusting the point charges and positions of
the dipoles, the electronic structure of His is recalculated using the SCCE calculation. There is
now no inter-cluster iteration; however, only the intra-cluster iteration of the His cluster needs
to be performed because the dipoles have no electron.

The electronic structure obtained in section 4 is considered as approximately the electronic
structure of His in the water solvent. According to that, the dipoles are adjusted. In order
to evaluate the difference between the calculated electronic structure and that obtained in
section 4, two criteria are established.

(1) The mean square deviation of eigenvalues. �Eσ = 1
Nσ [∑Nσ

n=1(ε
σ
n − εσ

n0)
2]1/2, where the

εσ
n and εσ

n0 are the eigenvalues of the nth electronic state with the spin σ calculated in this
section and in section 4, respectively. Nσ is the number of electrons with spin σ .

10
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Table 4. Point charges and coordinates of seven dipoles.

No. of Charge,
dipole e X (Å) Y (Å) Z (Å)

(1)
+0.8000 4.3278 1.5344 3.0215
−0.8000 4.4839 1.4890 3.5842

(2)
−0.5000 3.0947 −0.9618 −1.3135
+0.5000 3.4122 −1.8817 −1.2736

(3)
−0.7000 2.6042 3.0051 −2.4025
+0.7000 2.9328 3.4601 −2.5701

(4)
−0.5750 −0.2697 0.5799 −2.8479
+0.5750 −0.7798 0.6993 −3.1098

(5)
−0.8500 2.0257 −4.0049 −4.1905
+0.8500 2.1407 −4.2754 −4.6972

(6)
−0.6550 −3.0855 2.1250 2.6105
+0.6550 −3.3873 2.5544 2.8704

(7)
−0.6550 −5.9735 −1.1642 −0.0498
+0.6550 −6.4892 −1.4322 −0.1233

(2) The equivalent mean square deviation of the charge density. �Cσ =
1
N [∑N

i=1

∑N
j=1(

∑Nσ

n=1 Cσ∗
ni Cσ

n j − ∑Nσ

n=1 Cσ∗
ni0Cσ

n j0)
2]1/2, where the Cσ

ni and Cσ
ni0 are the

expansion coefficients of the eigenfunctions of the nth electronic states with the spin
σ calculated in this section and in section 4, respectively. N is the number of
Gaussian bases used to expand the one-electron wavefunction. (Please note the for-
mula (2): ρσ (r) = ∑Nσ

n=1 |�σ
n (r)|2 = ∑Nσ

n=1[
∑N

i=1 Cσ∗
ni U∗

i (
r)][∑N
j=1 Cσ

n j U j(
r)] =∑N
i=1

∑N
j=1[

∑Nσ

n=1 Cσ∗
ni Cσ

n j ]U∗
i (
r)U j (
r), where the Gaussian bases Ui(
r) are the same in

the two calculations.)

The initial charge of the dipoles is set to 0.5e. The distance L between the positive charge
and negative charge is 0.5857 Å, which remains unchanging. After the convergence, the values
of the two criteria are calculated. Then the point charges and the positions of the seven dipoles
are adjusted one by one, until the two criteria reach the minimum. Thus, the potential of seven
dipoles simulates the potential of water molecules for the electronic structure of His. The final
charges and coordinates of dipoles are in table 4, and the structure is shown in figure 2, where
the atoms and dipoles are numbered according to tables 1 and 4, respectively. Table 5 gives
the eigenvalues and Mulliken populations of the ten orbits near the Fermi level of His in the
potential of the dipoles.

6. Discussion

In order to study the water solvent effect on the electronic structure of His, the electronic
structure of isolated His is calculated by free cluster calculation. The total energy of isolated
His is −1091.7324 Ryd. The results are given in table 6.

The eigenvalues of orbits 34–43 of His with three potentials are given in table 7. The last
row gives the energy gap: Eg = E42 − E41. Figure 3 shows the comparison between the three
sets of eigenvalues of His for the potential of dipoles, that of water molecules and no potential,
respectively.

The properties of His are mainly determined by the electronic states near the Fermi level.
In tables 3, 5 and 6, the Mulliken population analysis shows that in all three cases, the electronic

11
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Figure 2. The final geometric structure of the His + 7dipoles system.

Table 5. Parts of the eigenvalues and Mulliken populations of His with the potential of seven
dipoles.

Mulliken populations

C N O H
Energy

State (Ryd) s p s p s p s p

43 −0.0585 0.4899 0.3923 0.5123 0.3231 0.0042 −0.0049 −0.7272 0.0102
42 −0.0763 0.2389 0.1865 1.6472 0.1652 0.0099 0.0058 −1.2629 0.0095

The above are unoccupied states
41 −0.3423 −0.0505 0.1196 0.0015 0.0014 0.0040 0.9385 −0.0070 0.0004
40 −0.3566 0.0123 0.0035 0.0094 0.0041 0.0016 0.9762 −0.0041 0.0001
39 −0.4108 0.0512 0.3900 0.0268 0.0317 0.0111 0.4765 0.0103 0.0025
38 −0.4359 0.1368 0.4399 0.0397 0.0434 0.0047 0.3323 −0.0008 0.0039
37 −0.5117 −0.0644 0.1444 0.2504 0.6389 0.0014 0.0045 0.0224 0.0023
36 −0.5270 −0.0107 0.1957 0.0782 0.7418 0.0009 0.0064 −0.0151 0.0046
35 −0.6250 0.0219 0.4442 0.0172 0.0380 0.0183 0.4659 −0.0066 0.0012
34 −0.6395 0.0023 0.2575 0.0091 0.0153 0.1866 0.4735 0.0585 0.0019

states below the Fermi level are similar: (a) one hybridized state of an oxygen 2p electron (from
COO−) and a carbon 2p electron (from atom 1: Cα); (b) one state of an oxygen 2p electron
from COO−; (c) one hybridized state of an oxygen 2p electron (from COO−), and carbon 2p
and 2s electrons (from atom 1: Cα); (d) one hybridized state of a carbon 2p electron (from the
benzene ring) and an oxygen 2p electron (from COO−); (e) two nitrogen 2p electrons from
the benzene ring of the lateral chain (states 37 and 36); (f) one hybridized state of oxygen 2p
and carbon 2p electrons from COO− (state 35); (g) one hybridized state of oxygen 2p, 2s, and
carbon 2p electrons from COO− (state 34). But the sequences of states (a), (b), (c) and (d) are
different in three cases (see table 7): (1) for isolated His, the sequence is 41, 40, 39 and 38;
(2) for His with the potential of water molecules, it is 40, 41, 38 and 39; (3) for His with the
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(a) (b) (c)

Figure 3. Comparison of three sets of eigenvalues: (a) dipoles; (b) water molecules; (c) none. (The
full line represents an occupied state; the dashed line represents an unoccupied state.)

Table 6. Parts of eigenvalues and Mulliken populations for isolated His.

Mulliken populations

C N O H
Energy

State (Ryd) s p s p s p s p

43 −0.1262 −0.0708 0.7151 −0.0575 0.3308 −0.0008 0.0038 0.0644 0.0149
42 −0.1751 −0.3798 0.0786 0.3735 0.0964 0.0139 0.0095 0.7939 0.0140

The above are unoccupied states
41 −0.3646 −0.0561 0.1536 −0.0278 −0.0043 −0.0062 0.9217 0.0186 0.0006
40 −0.3805 0.0108 0.0081 0.0088 0.0037 −0.0004 0.9695 −0.0006 0.0001
39 −0.4368 0.1145 0.1615 −0.0291 −0.0026 −0.0008 0.7369 0.0192 0.0004
38 −0.4933 −0.0059 0.8229 0.0502 0.0841 0.0006 0.0476 −0.0055 0.0060
37 −0.5696 −0.0862 0.1402 0.2964 0.6124 0.0015 0.0053 0.0287 0.0017
36 −0.5886 0.0004 0.2252 0.0326 0.7521 −0.0005 0.0022 −0.0175 0.0055
35 −0.6570 0.0113 0.4492 0.0103 0.0276 0.0153 0.4808 0.0045 0.0009
34 −0.6643 −0.0032 0.2366 0.0044 0.0107 0.2251 0.4933 0.0319 0.0011

potential of dipoles, it is 41, 40, and the states 38 and 39 are now indistinguishable from the
viewpoint of Mulliken populations.

By comparing the third and fourth columns of table 7, as well as figures 3(b) and (c), the
main effects of water molecules are seen to be as follows: (1) the energy gap broadens by 33%;
(2) two states (40 and 38) of the third column of table 7, which contain the contribution of the
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Table 7. Three sets of eigenvalues of His.

Energy (Ryd)

Eigenvalues Dipoles Water molecules No potential

43 (unoccupied) −0.0585 −0.0840 −0.1262
42 (unoccupied) −0.0763 −0.1058 −0.1751
41 (EF) −0.3423 −0.3578 −0.3646
40 −0.3566 −0.3635 −0.3805
39 −0.4108 −0.4114 −0.4368
38 −0.4359 −0.4380 −0.4933
37 −0.5117 −0.4880 −0.5696
36 −0.5270 −0.5260 −0.5886
35 −0.6250 −0.6217 −0.6570
34 −0.6395 −0.6569 −0.6643
Eg = E42 − E41 0.2631 0.2520 0.1895

carbon 2p electrons of the atom Cα , remain approximately unchanged, while the other six states
rise by about 0.049 Ryd which causes the exchanges of state positions between states 41 and
40, and between states 39 and 38.

The comparison of the second and third columns of table 7, as well as figures 3(a) and (b),
reveals that below the Fermi level, the eigenvalues of His with the potential of dipoles are close
to those of His with the potential of water molecules: five eigenvalues are almost unchanging,
and three eigenvalues have deviations of about 0.02 Ryd. Above the Fermi level, the energy gap
is broadened by 4.4%. This shows that the effect of water molecules on the electronic structure
of His can be simulated by the dipole potential.

7. Conclusion

The geometric structure of the His+7H2O system with the lowest total energy is determined by
free cluster calculation. On the basis of the geometric structure above, the electronic structure
of His with the potential of water molecules is calculated using the self-consistent cluster-
embedding calculation. Then the water molecules are replaced by adjustable dipoles. The
dipoles are adjusted so that the electronic structure of His with the potential of dipoles is close
to that with water molecules. The calculations show that the major effect of water molecules
on the His electronic structure is as follows: (1) the energy gap broadens by 33%; (2) two
states containing the contribution of carbon 2p electrons of the atom Cα remain approximately
unchanging, while the other six states rise by about 0.049 Ryd which causes the exchanges
of the state positions. The effect of water molecules on the electronic structure of His can
be simulated by the potential of dipoles; the eigenvalues and Mulliken populations calculated
using the two kinds of potentials are very close. So we established a simple, easy-to-use, with
almost no additional computational effort, dipole potential which simulated the effect of water
molecules on the His electronic structure.

More dipole potentials simulating the potentials of water molecules for other amino acids
will be constructed. All results will be directly applied to electronic structure calculations for
protein in aqueous solution.
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